
Giacomo Magini
require(‘lx’) 12/09/2019

Micro
Front-End @

Giacomo Magini

Software Engineer
(lots of Front-End)

Traditional Front-End

Ok. React, angular or Vue?

fiiiiiine

We need a dashboard!

I don’t care. Let’s use a design system!

You

Your CTO

Your CTO

You

🔥🔥🔥

yarn install

👨💻

We build a feature...

👨💻👨💻

and another...

👨💻👨💻👨💻

and another...

The problems begin!

Codebase has grown

Developers number

Development friction

Delivery time

Risk of collision for package update

 has grown

 has grown

 has grown

 has grown

📉 & 😩

About us...

Micro Front-End
Whaaaat?

“An architectural style where
independently deliverable frontend
applications are composed into a
greater whole.

Cam Jackson
(martinfowler.com)

Horrible MFE, HERE WE ARE!!

<html>
<body>
 <h1>Welcome to Onfido!</h1>
 <iframe src="https://mfe1.onfido.com"></iframe>
 <iframe src="https://mfe2.onfido.com"></iframe>
 <iframe src="https://mfe3.onfido.com"></iframe>
</body>
</html>

Onfido’s implementation

Main application

Event bus

MFE MFE MFE MFE

Application structure

MFE

Interface

Renderer

Store

What’s inside a MFE?

Source: https://developer.mozilla.org/en-US/docs/Web/API/Broadcast_Channel_API

Events - Broadcast channel

Nothing else to worry about?
MFE is a happy greenfield but...

● We can occur in conflicts due to name clashes
and global styles

● Pay attention to 3rd party libraries with global
CSS

● Solution: namespace all of your styles either
with CSS pre-processor, CSS-IN-JS or Shadow
DOM

Styling 👻- Stealthy rules

Global/Single instance- i.e. Sentry

● It really depends on the library
implementation

● An “easy” solution could be Dependency
Injection, if the library allows that.

Ship it (independently)
🎉🎉🎉🎉🎉🎉

● Static name for the entrypoint file of the bundle

● Cloudfront as CDN

S3 Bucket - AWS

Dynamic imports, lazy-loading

import(
 /* webpackIgnore: true */
`http://onfido.s3.aws.com/my-example-index.js`)
.then(() => {

 /* use your module here */

});

NOTE: this help us to update a MFE even if a user doesn’t refresh the page.

It’s all about trade-offs
What a news!

● No dependencies sharing, overall
size app will grow

● CSS is trickier
● Single/global instance libraries
● Easy to encounter in tech

fragmentation
● Incurs an overhead that is not

worthwhile for small apps.
However, if not planned for, it
could take a big effort to migrate
to this approach

DRAWBACKS

● MFEs can be worked on and
deployed independently

● Stability
● Deploys are much faster - no need to

compile and test the entire app
● Different frameworks play nice

together
● Every MFE is an independent app, it

allows you to iterate over new
technologies and learn it without
impacting the entire app.

● No dependencies sharing - no
potential for stealth dependency
updates causing unexpected issues

● No dependencies sharing, overall
size app will grow

● CSS is trickier
● Single/global instance libraries
● Easy to encounter in tech

fragmentation
● Incurs an overhead that is not

worthwhile for small apps.
However, if not planned for, it
could take a big effort to migrate
to this approach

BENEFITSDRAWBACKS

👋 👋 👋 👋

Thanks for
listening!

